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Abstract

A key feature of the analysis of three-way arrays by Candecomp/Parafac is the essential unique-
ness of the trilinear decomposition. Kruskal has previously shown that the three component matrices
involved are essentially unique when the sum of theirk-ranks is at least twice the rank of the decom-
position plus 2. It was proved that Kruskal’s sufficient condition is also necessary when the rank of
the decomposition is 2 or 3. If the rank is 4 or higher, the condition is not necessary for uniqueness.
However, when thek-ranks of the component matrices equal their ranks, necessity of Kruskal’s con-
dition still holds in the rank-4 case. Ten Berge and Sidiropoulos conjectured that Kruskal’s condition
is necessary for all cases of rank 4 and higher where ranks andk-ranks coincide. In the present paper
we show that this conjecture is false.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Carroll and Chang (1970)andHarshman (1970)have independently proposed the same
method for component analysis of three-way arrays, and christened it Candecomp and
Parafac, respectively. For a given three-way arrayX and a fixed number ofr components,
Candecomp/Parafac (CP) provides a trilinear decomposition as follows. WhenX contains
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K slices of orderI × J , CP yields component matricesA (I × r), B (J × r) andC (K × r)
such that

∑K
k=1 tr(E′

kEk) is minimized in the decomposition

Xk = ACkB′ + Ek, k = 1,2, . . . , K, (1)

whereCk is the diagonal matrix containing the elements ofkth row of C. The smallest
number of componentsr for which there exists a CP decomposition with perfect fit is equal
to the three-way rank of the array.
The uniqueness of aCP solution is usually studied for given residualsEk, k=1,2, . . . , K.

It can be seen that a CP decomposition, i.e., a decomposition of the matricesXk − Ek,
k = 1,2, . . . , K can only be unique up to rescaling and jointly permuting columns ofA, B
andC. Indeed, rescaling columns ofA or B or C by a diagonal matrixL is allowed, pro-
vided that the inverse ofL is accounted for elsewhere. For instance,ACkB′=ALL −1CkB′=
(AL )Ck(BL−1)′, which shows that replacingA byAL is allowed when paired with replac-
ingB byBL−1.Also, simultaneous permutations of columns ofA,B and diagonal elements
of Ck, k = 1,2, . . . , K, are allowed. Usually, these are the only transformational indeter-
minacies in CP.When, for given residualsEk, k =1,2, . . . , K, the matricesA,B andC are
unique up to these indeterminacies, the solution is calledessentially unique.
Kruskal (1977)has shown that (essential) uniqueness holds under relatively mild condi-

tions, to be discussed below.Ten Berge and Sidiropoulos (2002)have shown that Kruskal’s
condition is necessary and sufficient forr = 2 and 3, but not forr >3. They conjectured
that necessity still holds if the ranks ofA, B andC equal theirk-ranks (a notion to be
defined below) and proved the conjecture to hold for the caser =4. In the present paper two
counterexamples to the conjecture will be given, one forr = 5 and another forr = 6. That
is, Kruskal’s condition is not satisfied in the examples, while the solutions are (essentially)
unique and the ranks ofA, B andC equal theirk-ranks.

2. Kruskal’s condition for uniqueness

The most general sufficient condition for (essential) uniqueness of a CP solution is due
to Kruskal (1977). Kruskal’s condition relies on a particular concept of matrix rank that
he introduced, which has been namedk-rank (Kruskal rank) after him byHarshman and
Lundy (1984). Thek-rank of a matrix is the largest value ofmsuch that every subset ofm
columns of the matrix is linearly independent.
By definition, thek-rank of a matrix cannot exceed its rank. Thek-rank is 1 if there is a

pair of proportional columns. Kruskal’s condition is now: in CP the component matricesA,
B andC are essentially unique if

kA + kB + kC �2r + 2, (2)

wherekA, kB andkC are thek-ranks ofA,B andC, respectively.TenBerge andSidiropoulos
(2002)haveshown thatKruskal’s sufficient condition (2) is alsonecessary forr=2and3, but
not forr >3. In practice, (2) is almost invariably met, because the number of componentsr
is usually small enough. Note that (2) cannot be satisfied whenr =1. For this case, however,
conditions for essential uniqueness are trivial.
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Harshman (1972)has shown that it is sufficient for (essential) uniqueness to haveA and
B of full column rank andC of k-rank 2 or higher. Whenr = 2, Harshman’s condition is
equivalent to Kruskal’s condition. Forr >2, however, Kruskal’s condition may be satisfied
when Harshman’s is not.
Ten Berge and Sidiropoulos (2002)conjectured that Kruskal’s condition (2) is necessary

for essential uniqueness if thek-ranks ofA, B andC equal their ranks. They also proved
this for the caser = 4. Below, we give two examples withr >4 in whichk-ranks are ranks,
the solution is essentially unique, but (2) is not satisfied. This shows that the conjecture
is not true forr >4. In the first exampler = 5 and in the second exampler = 6. The
difference between the two examples is the following. For a random array (sampled from
a continuous distribution) the first example occurs with probability zero, while the second
example occurs with probability 1.
The concepts “with probability 1” and “with probability zero” are used throughout the

paper and may need some explanation. Suppose propertyx holds with probability 1 for
an array which is randomly sampled from a continuous distribution. Then this means that
arrays not satisfying propertyx occur with probability zero. For example, a 2× 2 × 1
array with its elements randomly sampled from a 4-dimensional continuous distribution,
has nonzero determinant with probability 1. Notice that this does not imply that property
x holds for all arrays. It may still be possible to contrive arrays for which propertyx does
not hold. For example, there are infinitely many 2× 2× 1 arrays with determinant zero.
However, such arrays have probability zero of occurring when randomly sampled from a
continuous distribution. Notice that if propertyy holds with probability zero for a random
array, then the negative of propertyy holds with probability 1.
Next, we start with our first example.

Example 1. 3× 3× 5 arrays withr = 5

Let I = J = 3 andK = r = 5. Let the component matricesA, B, andC of order 3× 5,
3× 5, and 5× 5, respectively, be randomly sampled from a continuous distribution. Then
the implied 3×3×5 array will have rank 5 with probability 1. This can be seen as follows.
LetXi =CAiB′ for i = 1,2,3, whereAi is the diagonal matrix containing the elements of
the ith row ofA. Then, with probability 1, the rank of [X1|X2|X3] equals 5, which implies
that the rank of the 3× 3 × 5 array is at least 5. However, sinceA, B, andC represent
a decomposition in 5 components, the array is at most of rank 5. Therefore, the implied
3× 3× 5 array has rank 5 with probability 1.
There will holdkA = rank(A)=3,kB = rank(B)=3 andkC = rank(C)=5. This implies

that Kruskal’s condition (2) is not satisfied, sincekA + kB + kC = 11 and 2r + 2= 12.
Hence, ifA, B andC were essentially unique our first counterexample would have been a
fact. However,Ten Berge (2004)proved that in this case the CP decomposition is partially
unique with probability 1. That is, there exist six possible CP solutions, any two of which
have four of the five components in common. This means that any solution (A,B,C) which
is essentially unique occurs with probability zero.Ten Berge (2004)first showed that a
random 3× 3× 5 array has rank{5 or 6} with probability 1 and then considers a random
3×3×5 array under the assumption that it has rank 5. In order to find an essentially unique
solution we will give an alternative proof of partial uniqueness for 3× 3× 5 arrays with
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r =5 by starting with randommatricesA,B andC. This approach allows us to determine in
which cases essential uniqueness occurs and results in our first counterexample. Our proof
of partial uniqueness is presented in the next section. After the proof we formulate our first
counterexample.

3. Partial uniqueness for3× 3× 5 arrays with r = 5

LetA, B andC be randomly sampled from a continuous distribution. Then, with proba-
bility 1, we are able to transform them intoC= I5,

A =
[1 0 0 1 a1
0 1 0 1 a2
0 0 1 1 a3

]
and B=

[1 0 0 1 b1
0 1 0 1 b2
0 0 1 1 b3

]
. (3)

This can be seen as follows (also see the appendix ofTen Berge and Sidiropoulos (2002)).
First, transformA andB such that they haveI3 in their first three columns. Denote their
fourth columns byaandb, respectively. Next, premultiply the newA andB by the inverses
of diag(a) and diag(b), respectively. This preserves diagonal matrices in the first three
columns, but transforms the fourth columns to(111)′. Then rescale the first three columns
of the presentA andB to restore the identity matrices, now absorbing the inverses of the
necessary constants in the columns ofC. Finally, premultiplyC by its inverse. Although
these transformations do change the array and its CP solution, they leave the ranks,k-ranks,
and uniqueness properties unaffected.
Next, we will show that, with probability 1, there exist five other solutions than (3). We

will make use of a necessary condition for essential uniqueness due toLiu and Sidiropoulos
(2001). Let Yk denote the fitted part ofXk in (1), i.e.Yk = ACkB′. LetY be the matrix
having Vec(Yk) as itskth column,k = 1,2, . . . , K, where the Vec is taken row wise. Then
Y can be written as

Y = (A • B)C′, (4)

whereA • B is the Khatri–Rao product (the column-wise Kronecker product) ofA andB.
Suppose thatA •B is not of full column rank. Then there exists a linear combination of the
columns ofA•Bwhich equals0. Suppose the (nonzero) vectorn contains the coefficients of
this linear combination. Thenn is orthogonal to the rows ofA •B. Addingn to any column
of C′ preserves (4), but produces a different solution forC. It follows that full column rank
of A • B is necessary for essential uniqueness.
As mentioned above, we consider the caseK = r =5 andC= I5. Suppose there exists an

alternative solutionY= (G•H)D′ andA •B is of full column rank, thenA •B= (G•H)D′,
withD nonsingular. Hence,A •B andG •H span the same spaces and, consequently, every
column ofG•H must be a linear combination of the columns ofA •B. This implies that five
linearly independent vectorswj can be found such that(A •B)wj = gj • hj =Vec(hjg′

j ).
Clearly, if the only possible set of five linearly independent vectorswj constitutes a rescaled
permutation matrix, the solutionY= (A •B)I5 has been proven essentially unique (see also
Jiang and Sidiropoulos, 2004). Below, we show that forA andB in (3) six rather than five
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of such vectorswj can be found, namely


�1
0
0
0
0


 ,




0
�2
0
0
0


 ,




0
0
�3
0
0


 ,




0
0
0
�4
0


 ,




0
0
0
0
�5


 and




x1�
x2�
x3�
x4�
�


 , (5)

where�1, �2, �3, �4, �5, � are arbitrary nonzero constants and thexi depend on the ele-
ments in the fifth columns ofA andB. Since any five of the six vectors in (5) are linearly
independent, this proves that exactly six different solutions exist and that any two different
solutions share four of the five components. Notice that if the sixth vector in (5) is not a
solution then essential uniqueness has been established.
We are now ready to present our proof of the existence of a solution (5). ForA andB in

(3) we have

, (6)

which has full column rank with probability 1. For a general vectorw= (����ε)′ the 3× 3
matrix form of(A • B)w is

W = hg′ =
[� + � + a1b1ε � + a1b2ε � + a1b3ε

� + a2b1ε � + � + a2b2ε � + a2b3ε

� + a3b1ε � + a3b2ε � + � + a3b3ε

]
. (7)

We determine all solutions(����ε)′ for whichW has indeed rank 1. We will use the fact
that the determinant of any minor ofW has to be zero. This yields nine equations. When
all elements ofW are nonzero, only four minors have to be checked. However, elements of
W are often zero in the solutions presented below. Therefore, we start with the equations
for all nine minors. The minor ofW obtained by deleting rowi and columnj is denoted by
M i,j .

det(M2,3) = �(� + a3b2ε) + �ε(a1 − a3)(b1 − b2) = 0, (8)

det(M3,2) = �(� + a2b3ε) + �ε(a1 − a2)(b1 − b3) = 0, (9)

det(M1,3) = −�(� + a3b1ε) + �ε(a2 − a3)(b1 − b2) = 0, (10)

det(M3,1) = −�(� + a1b3ε) + �ε(a1 − a2)(b2 − b3) = 0, (11)

det(M1,2) = �(� + a2b1ε) + �ε(a2 − a3)(b1 − b3) = 0, (12)
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det(M2,1) = �(� + a1b2ε) + �ε(a1 − a3)(b2 − b3) = 0, (13)

det(M3,3) = �� + �(� + a2b2ε) + �(� + a1b1ε) + �ε(a1 − a2)(b1 − b2) = 0, (14)

det(M2,2) = �� + �(� + a3b3ε) + �(� + a1b1ε) + �ε(a1 − a3)(b1 − b3) = 0, (15)

det(M1,1) = �� + �(� + a3b3ε) + �(� + a2b2ε) + �ε(a2 − a3)(b2 − b3) = 0. (16)

Notice that all terms(ai − aj ) and(bi − bj ) are nonzero with probability 1 fori �= j .
Suppose that� = 0. From (8) it follows that�ε = 0. There are three possibilities. If� = 0
andε �= 0, then (10) and (12) yield�=�=0. This also holds when� �= 0 andε=0. Finally,
if � = � = 0, it follows from (16) that�� = 0, so either� = 0 or � = 0. Hence, the second,
third, fourth and fifth vector in (5) have been found. It is easy to see that in these casesW
has indeed rank 1. Suppose next that� �= 0. Together, Eqs. (8) and (9) are equivalent to

−�ε

�
= � + a3b2ε

(a1 − a3)(b1 − b2)
= � + a2b3ε

(a1 − a2)(b1 − b3)
. (17)

If �ε = 0, then (17) implies that� = ε = 0 and (14) and (15) yield� = � = 0. It can be
seen thatW has indeed rank 1 in this case. This fifth solution is equivalent to the first
vector in (5). From now on we assume that� �= 0 and�ε �= 0. We make use of the
following fact. For any 3× 3 matrix of rank 1 with all elements nonzero, there holds that
if det(M i,j ) = 0 for all i �= j , then det(M i,i ) = 0, i = 1,2,3. Moreover, if all elements
are nonzero and det(M2,3) = det(M3,2) = det(M1,3) = det(M1,2) = 0, then it follows that
det(M3,1) = det(M2,1) = 0. Hence, if (8)–(10) and (12) are satisfied and all elements ofW
are nonzero, then also (11), (13) and (14)–(16) hold.We now determine all vectors(����ε)′
satisfying (8)–(10) and (12), or equivalently (10), (12) and (17). Since�ε �= 0 the second
equality in (17) can be written as

�

ε
= (a1 − a3)(b1 − b2)a2b3 − (a1 − a2)(b1 − b3)a3b2

(a1 − a2)(b1 − b3) − (a1 − a3)(b1 − b2)
= x4. (18)

Both the numerator and the denominator of the second term in (18) are analytical real-valued
functions of the six parametersaj andbj . Since they are not identically zero, it follows
fromFisher (1966, Theorem 5.A.2)that they are nonzero with probability 1. From the first
equality in (17) it follows that:

−�

ε
= x4(a1 − a3)(b1 − b2)

x4 + a3b2
= −x1. (19)

Using the result ofFisher (1966)as above, it can be shown that the denominator of the
second term in (19) is nonzero with probability 1. From (10) it follows that:

�

�
= x4(a2 − a3)(b1 − b2)

x4 + a3b1
= x2. (20)

Analogous to (19) the denominator of the second term in (20) is nonzero with probability
1. From (12) it follows that:

−�

ε
= x4(a2 − a3)(b1 − b3)

x4 + a2b1
= −x3. (21)



216 A. Stegeman, J.M.F. Ten Berge / Computational Statistics & Data Analysis 50 (2006) 210–220

The denominator of the second term in (21) is nonzero with probability 1. As stated above,
Eqs. (11), (13) and (14)–(16) hold automatically when using (18)–(21). It remains to verify
that all elements ofW are nonzero with probability 1. The matrixW is

W =
[

x1 + x4 + a1b1 x4 + a1b2 x4 + a1b3
x4 + a2b1 x2 + x4 + a2b2 x4 + a2b3
x4 + a3b1 x4 + a3b2 x3 + x4 + a3b3

]
ε. (22)

Notice that, since rank(W)=1, if the element in rowi and columnj is zero, then either row
i is (0 0 0) or columnj is (000)′ or both. This yields equalities of the formai = aj with
i �= j or bi = bj with i �= j , which have probability zero. Hence, all elements ofW are
nonzero. The solution (18)–(21) with� �= 0 is equivalent to the sixth vector in (5). Since we
have shown that exactly six different solutionsw exist, this concludes our proof of partial
uniqueness.

Example 1. construction of a case of essential uniqueness

Recall that our goal is to determine a CP solution (A,B,C) for a 3×3×5 array withr =5,
which is essentially unique. Above, we showed that if (A,B,C) are randomly sampled from
a continuous distribution, then there exist exactly six different solutions with probability 1.
Each solution can be constructed from five of the six vectorsw in (5) for which the 3× 3
matrix form of(A • B)w has rank 1. If the sixth vector in (5) cannot be used, the solution
is essentially unique. We will now show how to pick anA andB where this happens.
Above, we considered all vectors(����ε)′ for whichW in (7) has rank 1. The sixth vector

in (5) was discovered by starting with the assumptions� �= 0 and�ε �= 0. This yielded the
Eqs. (18)–(21) characterizing the sixth vector in (5). Suppose we choose the numbersai

andbi such that either the numerator or the denominator of the expression in (18) is zero.
Then� = ε = 0 has to hold if� �= 0 and the sixth vector in (5) cannot be used anymore. In
this case, the only set of five linearly independent vectorsw such that the matrixW in (7)
has rank 1, are the first five vectors in (5), which constitute a rescaled permutation matrix.
Hence, the CP solution is essentially unique. From the proof above it follows that these
situations have probability zero. A numerical example of such a solution is the following.
LetC= I5,

A =
[1 0 0 1 1
0 1 0 1 2
0 0 1 1 3

]
and B=

[1 0 0 1 1
0 1 0 1 3
0 0 1 1 5

]
, (23)

then the numerator in (18) equals 4, while the denominator is zero. It can be verified that
kA = rank(A)=3,kB = rank(B)=3 andkC = rank(C)=5. Moreover, the implied 3×3×5
array has rank 5. This is a case of essential uniqueness, which is a first counterexample to
the conjecture ofTen Berge and Sidiropoulos (2002).
It is instructive to examine this counterexample in terms of the analysis of partial unique-

ness byTen Berge (2004). In his proof of partial uniqueness for random 3× 3× 5 arrays
of rank 5, Ten Berge shows that the component matricesA, B andC can be constructed
from five roots of a 7th degree polynomial. This polynomial has seven real roots, one of
which is to be discarded. Hence, there remain six roots, five of which are used. This yields
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six possible CP solutions, any two of which have four of the five components in common.
Applying the approach of Ten Berge to our example in (23) yields the following. After
transforming the 3× 3× 5 array implied by (23) to the form Ten Berge starts from, we
find that the coefficient of the leading term of the 7th degree polynomial is zero. Hence, we
obtain a 6th degree polynomial. Since one root has to be discarded, only five roots remain
and only one CP solution is possible. However, we cannot conclude that our analysis of the
3× 3× 5 arrays of rank 5 is fully compatible with that ofTen Berge (2004). This can be
seen as follows. We use a transformation of (A,B,C) to the form (3) which is possible with
probability 1. Ten Berge transforms the random 3× 3× 5 array to a simple form, which
is also possible with probability 1. Therefore, it may happen that the implied array of an
essentially unique solution (A,B,C) of the form (3), which has probability zero, cannot be
transformed to the form Ten Berge starts from.
It may be noted that our analysis of the 3× 3× 5 arrays of rank 5 can be readily adapted

to the case where the five slices aresymmetricmatrices.Ten Berge et al. (2004)have shown
that also symmetric 3×3×5arrays,when randomly sampled fromacontinuous distribution,
have rank{5 or 6}with probability 1. They found that, when the symmetric 3×3×5 array
has rank 5, then there exist infinitely many CP solutions. Our proof above allows the same
inference from a different perspective. That is, if we setA=B in (3) a symmetric 3×3×5
array of rank 5 is obtained. Again, we may consider vectorsw = (����ε)′ for which the
matrixW in (7) has rank 1. Hence, Eqs. (8)–(16) must hold. SinceA =B, (8) is equivalent
to (9), (10) is equivalent to (11) and (12) is equivalent to (13). Note that this implies that we
cannot use (18); both numerator and denominator being zero. From (8)–(13) it follows that
�, � and� are completely determined by� and�. Next, use the fact that for any 3×3 matrix
of rank 1 with nonzero elements and det(M i,j ) = 0 for all i �= j , there holds det(M i,i ) = 0,
i = 1,2,3. Hence, if (8)–(13) are satisfied and all elements ofW are nonzero, then also
(14)–(16) hold. In this way, it can be verified that there exist infinitely many pairs (�, ε) that
constitute a vectorw for whichW has rank 1 (excluding cases of probability zero). This
shows that indeed infinitely many CP solutions exist in the symmetric case.

Example 2. 3× 4× 6 arrays withr = 6

Here we present our second counterexample to the conjecture that Kruskal’s condition
(2) is necessary for essential uniqueness when thek-ranks ofA, B andC equal their ranks.
This example concerns 3×4×6 arrays of rankr =6.We adopt the same approach as in the
previous section, i.e. we start with component matricesA, B, andC of order 3× 6, 4× 6,
and 6× 6, respectively, which are randomly sampled from a continuous distribution. The
implied 3× 4× 6 array will have rank 6 with probability 1. This can be seen as follows.
LetXi =CAiB′ for i = 1,2,3, whereAi is the diagonal matrix containing the elements of
the ith row ofA. Then, with probability 1, the rank of[X1|X2|X3] equals 6, which implies
that the rank of the 3× 4 × 6 array is at least 6. However, sinceA, B, andC represent
a decomposition in 6 components, the array is at most of rank 6. Therefore, the implied
3× 4× 6 array has rank 6 with probability 1.
There will holdkA = rank(A)=3,kB = rank(B)=4 andkC = rank(C)=6. This implies

that Kruskal’s condition (2) is not satisfied, sincekA + kB + kC = 13 and 2r + 2= 14.
Next, we show thatA, B andC are essentially unique with probability 1, thus establishing
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our second counterexample. Analogous to Example 1, the component matricesA, B andC
may be transformed, with probability 1, intoC= I6 and

A =
[1 0 0 1 x1 y1
0 1 0 1 x2 y2
0 0 1 1 x3 y3

]
and B=



1 0 0 0 1 z1
0 1 0 0 1 z2
0 0 1 0 1 z3
0 0 0 1 1 z4


 , (24)

wherexi , yi andzi are nonzero with probability 1. We have

, (25)

which has full column rank with probability 1. For a general vectorw= (������)′ the 3×4
matrix form of(A • B)w is

W=hg′

=
[� + x1ε + y1z1� x1ε + y1z2� x1ε + y1z3� � + x1ε + y1z4�

x2ε + y2z1� � + x2ε + y2z2� x2ε + y2z3� � + x2ε + y2z4�
x3ε + y3z1� x3ε + y3z2� � + x3ε + y3z3� � + x3ε + y3z4�

]
.

(26)

Next we determine all solutions(����ε�)′ for which rank(W)=1. Suppose first that�=0
andε �= 0. Then� = � = � = 0. Moreover, sincexi �= xj for i �= j with probability 1, also
� = 0. This yields the first solutionw1 = (0000ε 0)′. Suppose next that� = 0 andε = 0.
Then only one of�, �, �, � can be nonzero. This yields the four solutionsw2= (�00000)′,
w3 = (0�0000)′, w4 = (00�000)′ andw5 = (000�00)′. Now suppose that� �= 0
andε = 0. Then there must hold, with probability 1, that� = � = � = � = 0. The sixth
solution is thusw6= (00000�)′.The vectorswi constitute a rescaled permutation matrix.
Therefore, if no more solutions are possible we have shown thatA, B andC in (24) are
essentially unique with probability 1. Thus it remains to show that� �= 0 and� �= 0 yields
a contradiction with probability 1.
The proof of this is as follows. Suppose that� �= 0 andε �= 0. Definew̃ij = xiε + yizj�

for i = 1,2,3 andj = 1,2,3,4. Then

W =
[� + w̃11 w̃12 w̃13 � + w̃14

w̃21 � + w̃22 w̃23 � + w̃24
w̃31 w̃32 � + w̃33 � + w̃34

]
. (27)
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Notice that no more than onẽwij can be zero. Indeed, if̃wij = w̃kl = 0 with (i, j) �= (k, l),
then (with probability 1) we have a system of two linear independent and homogenous
equations inε and�, which can only be solved byε=�=0. This implies that no column of
W equals(000)′ and no row ofW equals (0 000). Together with the fact that rank(W)=1
this implies that we must havẽw21 �= 0, w̃31 �= 0, w̃32 �= 0. Analogously, alsõw12 �= 0,
w̃13 �= 0, w̃23 �= 0. Moreover, there exist nonzero constantsc1 andc2 such that row 1 ofW
equalsc1 times row 2 and row 2 equalsc2 times row 3. For each column ofW this yields
two equations. From the equations for columns 1 and 3 it follows that:

c1 = w̃13

w̃23
and c2 = w̃21

w̃31
, (28)

� = c1w̃21− w̃11 and � = w̃23

c2
− w̃33. (29)

From the second column we obtain the following two equations for�

� = w̃12

c1
− w̃22 and � = c2w̃32 − w̃22. (30)

Using (28), it can be seen that for (30) to hold we must havew̃12w̃23w̃31 = w̃13w̃21w̃32.
This expression is equivalent to

�

�
= x2y1y3z2(z3 − z1) + x3y1y2z3(z1 − z2) + x1y2y3z1(z2 − z3)

x1x2y3(z1 − z2) + x1x3y2(z3 − z1) + x2x3y1(z2 − z3)
. (31)

Hence, by choosing�, �, �, ε, � as in (29)–(31) the matrix consisting of the first three
columns ofW will have rank 1.
Next, we show that adding the equations for the fourth column ofW leads to a contra-

diction. From the fourth column we obtain the following two equations for�:

(1− c1)� = c1w̃24− w̃14 and (1− c2)� = c2w̃34− w̃24. (32)

Both c1 = 1 andc2 = 1 would yield (with probability 1) a ratio�/� different from (31).
Therefore, we may assume thatc1 �= 1 andc2 �= 1. Using (28), it can be seen that (32) can
only hold if

w̃14w̃23(w̃21− w̃31) + w̃24(w̃23w̃31− w̃21w̃13) + w̃34w̃21(w̃13− w̃23) = 0. (33)

Wewriteε=d�, where the constantd is definedby the right-handsideof (31).Consequently,
we may writew̃ij = eij� whereeij = xid + yizj are constants. In this notation (33) is
equivalent to�3ẽ = 0, with

ẽ = e14e23(e21− e31) + e24(e23e31− e21e13) + e34e21(e13− e23). (34)

ByFisher (1966)wehavẽe �= 0withprobability 1.Hence�=0must hold,whichcontradicts
the assumption of� �= 0. This shows that� �= 0 andε �= 0 cannot occur and completes
the proof of our second counterexample.
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4. Discussion

The examples of this paper refute the conjecture, stated inTen Berge and Sidiropoulos
(2002), that Kruskal’s condition will be necessary and sufficient when ranks andk-ranks
coincide, forr >4.Twocounterexampleshavebeengiven.Example1, inwhichr=5, occurs
with probability zero and Example 2, in whichr = 6, occurs with probability 1. Since we
have not found a counterexample forr = 5 which occurs with positive probability, it might
still be true that the conjecture holds forr =5 with probability 1. However, 4×4×3 arrays
of rank 5 invariably do seem to yield unique solutions in numerical experiments. These
arrays represent cases where ranks andk-ranks coincide, for which Kruskal’s condition is
not met. Although we have no mathematical proof for uniqueness in these cases, it does
seem safe to conclude that the conjecture byTen Berge and Sidiropoulos (2002)is incorrect
for r = 5 generically, and not just in cases which occur with probability zero.
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