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Abstract

A key feature of the analysis of three-way arrays by Candecomp/Parafac is the essential unique-
ness of the trilinear decomposition. Kruskal has previously shown that the three component matrices
involved are essentially unique when the sum of tkesinks is at least twice the rank of the decom-
position plus 2. It was proved that Kruskal’s sufficient condition is also necessary when the rank of
the decomposition is 2 or 3. If the rank is 4 or higher, the condition is not necessary for uniqueness.
However, when thé-ranks of the component matrices equal their ranks, necessity of Kruskal’s con-
dition still holds in the rank-4 case. Ten Berge and Sidiropoulos conjectured that Kruskal’s condition
is necessary for all cases of rank 4 and higher where rankk-eamiks coincide. In the present paper
we show that this conjecture is false.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Carroll and Chang (197@ndHarshman (1970ave independently proposed the same
method for component analysis of three-way arrays, and christened it Candecomp and
Parafac, respectively. For a given three-way aXagnd a fixed number af components,
Candecomp/Parafac (CP) provides a trilinear decomposition as follows. Whentains
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K slices of orderr x J, CP yields component matricAs(/ x r), B (J x r) andC (K x r)
such thatz,letr(E}(Ek) is minimized in the decomposition

Xy =ACB ' +E;, k=12, ..., K, (1)

whereC; is the diagonal matrix containing the elementskthf row of C. The smallest
number of componentsfor which there exists a CP decomposition with perfect fit is equal
to the three-way rank of the array.

The uniqueness of a CP solution is usually studied for given resiftyats=1, 2, ..., K.
It can be seen that a CP decomposition, i.e., a decomposition of the matjicesy,
k=1,2,..., K can only be unique up to rescaling and jointly permuting columms, &
andC. Indeed, rescaling columns Afor B or C by a diagonal matrix is allowed, pro-
vided that the inverse &f is accounted for elsewhere. For instad@;B'=ALL ~1C;B'=
(AL)Cr(BL 1Y, which shows that replaciny by AL is allowed when paired with replac-
ing B by BL L. Also, simultaneous permutations of column#oB and diagonal elements
of Cy, k=1,2,..., K, are allowed. Usually, these are the only transformational indeter-
minacies in CP. When, for given residuilg, k=1, 2, ..., K, the matrice#\, B andC are
unique up to these indeterminacies, the solution is calésentially unique

Kruskal (1977)has shown that (essential) uniqgueness holds under relatively mild condi-
tions, to be discussed belowien Berge and Sidiropoulos (20023ve shown that Kruskal’s
condition is necessary and sufficient foe= 2 and 3, but not for > 3. They conjectured
that necessity still holds if the ranks &f B and C equal theirk-ranks (a notion to be
defined below) and proved the conjecture to hold for the cas. In the present paper two
counterexamples to the conjecture will be given, one-fer5 and another for = 6. That
is, Kruskal’s condition is not satisfied in the examples, while the solutions are (essentially)
unique and the ranks @&f, B andC equal theik-ranks.

2. Kruskal's condition for uniqueness

The most general sufficient condition for (essential) uniqueness of a CP solution is due
to Kruskal (1977) Kruskal's condition relies on a particular concept of matrix rank that
he introduced, which has been nantethnk (Kruskal rank) after him byarshman and
Lundy (1984) Thek-rank of a matrix is the largest value wfsuch that every subset of
columns of the matrix is linearly independent.

By definition, thek-rank of a matrix cannot exceed its rank. Theank is 1 if there is a
pair of proportional columns. Kruskal’s condition is now: in CP the component magices
B andC are essentially unique if

ka+ kg +kc>2r + 2, (2)

wherek4, kg andk¢ are thek-ranks ofA, B andC, respectivelyTen Berge and Sidiropoulos
(2002)have shown that Kruskal's sufficient condition (2) is also hecessaryf@rand 3, but

not forr > 3. In practice, (2) is almost invariably met, because the number of companents
is usually small enough. Note that (2) cannot be satisfied wheh For this case, however,
conditions for essential uniqueness are trivial.
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Harshman (1972has shown that it is sufficient for (essential) uniqueness to Aaved
B of full column rank andC of k-rank 2 or higher. When = 2, Harshman'’s condition is
equivalent to Kruskal's condition. Fer> 2, however, Kruskal's condition may be satisfied
when Harshman'’s is not.

Ten Berge and Sidiropoulos (200@)njectured that Kruskal’s condition (2) is necessary
for essential uniqueness if tikeranks ofA, B andC equal their ranks. They also proved
this for the case = 4. Below, we give two examples with> 4 in whichk-ranks are ranks,
the solution is essentially unique, but (2) is not satisfied. This shows that the conjecture
is not true forr > 4. In the first example = 5 and in the second exampte= 6. The
difference between the two examples is the following. For a random array (sampled from
a continuous distribution) the first example occurs with probability zero, while the second
example occurs with probability 1.

The concepts “with probability 1” and “with probability zero” are used throughout the
paper and may need some explanation. Suppose prapédids with probability 1 for
an array which is randomly sampled from a continuous distribution. Then this means that
arrays not satisfying property occur with probability zero. For example, ax22 x 1
array with its elements randomly sampled from a 4-dimensional continuous distribution,
has nonzero determinant with probability 1. Notice that this does not imply that property
x holds for all arrays. It may still be possible to contrive arrays for which propediyes
not hold. For example, there are infinitely mank2 x 1 arrays with determinant zero.
However, such arrays have probability zero of occurring when randomly sampled from a
continuous distribution. Notice that if propempyholds with probability zero for a random
array, then the negative of propestyrolds with probability 1.

Next, we start with our first example.

Example 1. 3 x 3 x 5 arrays withr =5

Let/ = J =3 andK =r = 5. Let the component matricés B, andC of order 3x 5,
3 x 5, and 5x 5, respectively, be randomly sampled from a continuous distribution. Then
the implied 3x 3 x 5 array will have rank 5 with probability 1. This can be seen as follows.
LetX; = CA;B' fori =1, 2, 3, whereA; is the diagonal matrix containing the elements of
theith row of A. Then, with probability 1, the rank ok[;|X2|X3] equals 5, which implies
that the rank of the X 3 x 5 array is at least 5. However, sinde B, andC represent
a decomposition in 5 components, the array is at most of rank 5. Therefore, the implied
3 x 3 x 5 array has rank 5 with probability 1.

There will holdk4 =rank(A) =3, kg =rank(B) =3 andk¢ =rank(C) =5. This implies
that Kruskal's condition (2) is not satisfied, sinkg + kp + kc =11 and 2 + 2 =12.
Hence, ifA, B andC were essentially unique our first counterexample would have been a
fact. However,Ten Berge (2004proved that in this case the CP decomposition is partially
unique with probability 1. That is, there exist six possible CP solutions, any two of which
have four of the five components in common. This means that any soléjBr(Q) which
is essentially unique occurs with probability zef@n Berge (2004jirst showed that a
random 3x 3 x 5 array has rankb or 6} with probability 1 and then considers a random
3 x 3 x 5 array under the assumption that it has rank 5. In order to find an essentially unique
solution we will give an alternative proof of partial uniqueness for 3 x 5 arrays with
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r =5 by starting with random matricés B andC. This approach allows us to determine in
which cases essential uniqueness occurs and results in our first counterexample. Our proof
of partial uniqueness is presented in the next section. After the proof we formulate our first
counterexample.

3. Partial unigueness for3 x 3 x 5 arrays with r =5

LetA, B andC be randomly sampled from a continuous distribution. Then, with proba-
bility 1, we are able to transform them in©= I 5,

1 00 1 ay 1 00 1 pm
A:|:0 1 01 a2:| and Bz[O 1 01 b2:|. (3)
0 01 1 a3 0 01 1 b3

This can be seen as follows (also see the appendirioBerge and Sidiropoulos (2002)
First, transformA andB such that they havk; in their first three columns. Denote their
fourth columns bya andb, respectively. Next, premultiply the nedvandB by the inverses

of diag@) and diagh), respectively. This preserves diagonal matrices in the first three
columns, but transforms the fourth columngtd 1)’. Then rescale the first three columns
of the presenfA andB to restore the identity matrices, now absorbing the inverses of the
necessary constants in the column<Cofrinally, premultiplyC by its inverse. Although
these transformations do change the array and its CP solution, they leave thé-ramks,

and uniqueness properties unaffected.

Next, we will show that, with probability 1, there exist five other solutions than (3). We
will make use of a necessary condition for essential uniqueness direand Sidiropoulos
(2001) Let Y denote the fitted part oX; in (1), i.e. Yy = AC;B’. LetY be the matrix
having Vecl ;) as itskth column,k =1, 2, ..., K, where the Vec is taken row wise. Then
Y can be written as

Y =(AeB)C, (4)

whereA e B is the Khatri-Rao product (the column-wise Kronecker producf ahdB.
Suppose thaA e B is not of full column rank. Then there exists a linear combination of the
columns ofA e B which equal®). Suppose the (nonzero) vectocontains the coefficients of
this linear combination. Themis orthogonal to the rows & e B. Addingn to any column
of C’ preserves (4), but produces a different solutionGott follows that full column rank
of A e B is necessary for essential uniqueness.

As mentioned above, we consider the c&se r =5 andC = I 5. Suppose there exists an
alternative solutiorY = (G e H)D’ andA e B is of full column rank, theiA e B=(GeH)D’,
with D nonsingular. Hence e B andG e H span the same spaces and, consequently, every
column ofG e H must be a linear combination of the column#\afB. This implies that five
linearly independent vectors; can be found such tha# e B)w; =g; e h; = Vec(h;d’).
Clearly, if the only possible set of five linearly independent veatgrsonstitutes a rescaled
permutation matrix, the solutiors= (A e B)I5 has been proven essentially unique (see also
Jiang and Sidiropoulos, 20pBelow, we show that foA andB in (3) six rather than five
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of such vectorsv; can be found, namely

A 0 0 0 0 X1

0 A2 0 0 0 X[l

0 s 0 s /13 s 01, 0 and x3u |, (5)
0 0 0 A4 0 X4

0 0 0 0 /5 U

where A1, 12, 13, 14, 15, u are arbitrary nonzero constants and thelepend on the ele-
ments in the fifth columns @& andB. Since any five of the six vectors in (5) are linearly
independent, this proves that exactly six different solutions exist and that any two different
solutions share four of the five components. Notice that if the sixth vector in (5) is not a
solution then essential uniqueness has been established.

We are now ready to present our proof of the existence of a solution (5 &odB in
(3) we have

ayb;
arby
aibs
aszby
azbz (6)
azbs
azb
azby
azbz |

(AeB) =

ool loNeBol lolall
el eNel el =l [=Rele)
i =] [ellele] jelie ]
—_ = === == = =

which has full column rank with probability 1. For a general veetes (afyd¢) the 3x 3
matrix form of (A e B)w is

o+ 0+ aibre o+ aibre d + aibze
W =hg = 0 + azbre P+ 0+ azboe 0 + asbze (7
0+ azbre 0 + azbre 7+ 0 + asbze

We determine all solution&:fyds)’ for whichW has indeed rank 1. We will use the fact
that the determinant of any minor @f has to be zero. This yields nine equations. When

all elements oW are nonzero, only four minors have to be checked. However, elements of
W are often zero in the solutions presented below. Therefore, we start with the equations
for all nine minors. The minor diV obtained by deleting rowand columrj is denoted by

M,’ﬁj.

det(M2 3) = a(0 + agbze) + de(ar — ag)(br — b2) =0, 8
det(M3 2) = a(0 + azbze) + de(ar — az)(by — b3) =0, ©)
det(My,3) = —B(6 + agbie) + de(az — az)(by — b2) =0, (10)
detM3 1) = —B(0 + a1bze) + de(ar — az)(ba — b3) =0, (11)

det(M1,2) = (6 + azxb1e) + de(az — az) (b1 — b3) =0, (12)
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dettMz 1) = y(J + a1bze) + de(ar — az) (b — b3) =0, (13)
dettM33) = aff + (0 + azboe) + (0 + a1bie) + de(a1 — az)(b1 — b2) =0, (14)
detM2,2) = oy + a(6 + agbze) + 7(0 + aibie) + de(ar — az) (b1 — bz) =0, (15)
dettM1,1) = By + B(0 + asbze) + y(J + azbze) + de(az — az)(bz — bz) = 0. (16)

Notice that all termga; — a;) and (b; — b;) are nonzero with probability 1 far # ;.
Suppose that = 0. From (8) it follows thate = 0. There are three possibilities.d= 0
ande # 0, then (10) and (12) yield=y=0. This also holds whe#i # 0 ands =0. Finally,

if 0 =¢=0, it follows from (16) thatfy = 0, so eithers = 0 ory = 0. Hence, the second,
third, fourth and fifth vector in (5) have been found. It is easy to see that in theseWases
has indeed rank 1. Suppose next that 0. Together, Egs. (8) and (9) are equivalent to

—d¢ . 0 + asbre _ 0 + axbze
o (a1—az)(by—bp) (a1 —az)(bi—b3)’

If e =0, then (17) implies that = ¢ = 0 and (14) and (15) yielg =y = 0. It can be
seen thatV has indeed rank 1 in this case. This fifth solution is equivalent to the first
vector in (5). From now on we assume that# 0 andds # 0. We make use of the
following fact. For any 3x 3 matrix of rank 1 with all elements nonzero, there holds that
if det(M; ;) =0 for alli # j, then detM;;) =0,i =1, 2, 3. Moreover, if all elements
are nonzero and d@il; 3) = det(M 3 ) = det(M 1 3) = det(M 1 2) = O, then it follows that
det(M3 1) =det(M 1) = 0. Hence, if (8)—-(10) and (12) are satisfied and all elemeritg of
are nonzero, then also (11), (13) and (14)—(16) hold. We now determine all vegipds)’
satisfying (8)—(10) and (12), or equivalently (10), (12) and (17). Siiace: 0 the second
equality in (17) can be written as

0 _ (a1 —az)(by — ba)azbz — (a1 — az)(by — b3)agbz .
& (a1 — a2)(b1 — b3) — (a1 — az) (b1 — b2)
Both the numerator and the denominator of the second termin (18) are analytical real-valued
functions of the six parametetg andb;. Since they are not identically zero, it follows
from Fisher (1966, Theorem 5.A.®)at they are nonzero with probability 1. From the first
equality in (17) it follows that:

(17)

(18)

—o _ x4(a1 —az)(by —b2)
e x4 + azbr a
Using the result ofisher (1966) s above, it can be shown that the denominator of the
second term in (19) is nonzero with probability 1. From (10) it follows that:
B _ xalaz —a3)(br —b2) _ .
e X4 + azby 2

Analogous to (19) the denominator of the second term in (20) is nonzero with probability
1. From (12) it follows that:

—X1. (29)

(20)

s — b1 —b
—7 _ xalaz —a3)(by — b3) _ s (21)
° X4+ axby
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The denominator of the second term in (21) is nonzero with probability 1. As stated above,
Egs. (11), (13) and (14)—(16) hold automatically when using (18)—(21). It remains to verify
that all elements oV are nonzero with probability 1. The mati¥ is

X1+ x4 + a1b1 X4 + aibr X4 + aibs
W = x4 + asb1 X2 + x4 + azby x4 + azbz & (22)
x4 + azby x4 + azbr x3 + x4 + azbz

Notice that, since rankV) =1, if the element in rowand columrj is zero, then either row

i is (000) or columrj is (000 or both. This yields equalities of the form = a; with

i # jorb; =b;withi # j, which have probability zero. Hence, all element3\dfare
nonzero. The solution (18)—(21) with# 0 is equivalent to the sixth vector in (5). Since we
have shown that exactly six different solutionsexist, this concludes our proof of partial
uniqueness.

Example 1. construction of a case of essential uniqueness

Recall that our goal is to determine a CP solutid;B(C) for a 3x 3 x 5 array withr =5,
which is essentially unique. Above, we showed thafi§,C) are randomly sampled from
a continuous distribution, then there exist exactly six different solutions with probability 1.
Each solution can be constructed from five of the six veatons (5) for which the 3x 3
matrix form of (A e B)w has rank 1. If the sixth vector in (5) cannot be used, the solution
is essentially unique. We will now show how to pickArandB where this happens.

Above, we considered all vectotgfyde)’ for whichW in (7) has rank 1. The sixth vector
in (5) was discovered by starting with the assumptions 0 andos # 0. This yielded the
Egs. (18)—(21) characterizing the sixth vector in (5). Suppose we choose the numbers
andb; such that either the numerator or the denominator of the expression in (18) is zero.
Thend = ¢ =0 has to hold itx # 0 and the sixth vector in (5) cannot be used anymore. In
this case, the only set of five linearly independent veatossich that the matriXV in (7)
has rank 1, are the first five vectors in (5), which constitute a rescaled permutation matrix.
Hence, the CP solution is essentially unique. From the proof above it follows that these
situations have probability zero. A numerical example of such a solution is the following.
LetC =1s,

100 1 1 100 1 1
A:[0101§:| and B=[0101§:|, (23)
0011 0011

then the numerator in (18) equals 4, while the denominator is zero. It can be verified that
k4 =rank(A) =3, kp =rank(B) =3 andk¢ =rank(C) =5. Moreover, the implied ¥ 3x 5
array has rank 5. This is a case of essential uniqueness, which is a first counterexample to
the conjecture ofen Berge and Sidiropoulos (2002)

Itis instructive to examine this counterexample in terms of the analysis of partial unique-
ness byTen Berge (2004)In his proof of partial uniqueness for randonx3 x 5 arrays
of rank 5, Ten Berge shows that the component matce® and C can be constructed
from five roots of a 7th degree polynomial. This polynomial has seven real roots, one of
which is to be discarded. Hence, there remain six roots, five of which are used. This yields
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six possible CP solutions, any two of which have four of the five components in common.
Applying the approach of Ten Berge to our example in (23) yields the following. After
transforming the 3« 3 x 5 array implied by (23) to the form Ten Berge starts from, we
find that the coefficient of the leading term of the 7th degree polynomial is zero. Hence, we
obtain a 6th degree polynomial. Since one root has to be discarded, only five roots remain
and only one CP solution is possible. However, we cannot conclude that our analysis of the
3 x 3 x 5 arrays of rank 5 is fully compatible with that ®&n Berge (2004)This can be
seen as follows. We use a transformationg8,C) to the form (3) which is possible with
probability 1. Ten Berge transforms the randont 3 x 5 array to a simple form, which
is also possible with probability 1. Therefore, it may happen that the implied array of an
essentially unique solutio®\(B,C) of the form (3), which has probability zero, cannot be
transformed to the form Ten Berge starts from.

It may be noted that our analysis of the3® x 5 arrays of rank 5 can be readily adapted
to the case where the five slices ayenmetrianatricesTen Berge et al. (2004jave shown
that also symmetric 83x 5 arrays, when randomly sampled from a continuous distribution,
have ranK5 or 6} with probability 1. They found that, when the symmetrig 3 x 5 array
has rank 5, then there exist infinitely many CP solutions. Our proof above allows the same
inference from a different perspective. That is, if weAet B in (3) a symmetric 3« 3x 5
array of rank 5 is obtained. Again, we may consider veciots («yds)’ for which the
matrixW in (7) has rank 1. Hence, Egs. (8)—(16) must hold. Skce B, (8) is equivalent
to (9), (10) is equivalent to (11) and (12) is equivalent to (13). Note that this implies that we
cannot use (18); both numerator and denominator being zero. From (8)—(13) it follows that
a, f andy are completely determined yande. Next, use the fact that for any-33 matrix
of rank 1 with nonzero elements and @t ;) =0 for alli # j, there holds d&M; ;) =0,
i =1,2,3. Hence, if (8)—(13) are satisfied and all element¥\bére nonzero, then also
(14)—(16) hold. In this way, it can be verified that there exist infinitely many paies that
constitute a vectow for whichW has rank 1 (excluding cases of probability zero). This
shows that indeed infinitely many CP solutions exist in the symmetric case.

Example 2. 3 x 4 x 6 arrays withr =6

Here we present our second counterexample to the conjecture that Kruskal's condition
(2) is necessary for essential uniqgueness whek-tladks ofA, B andC equal their ranks.
This example concernsx34 x 6 arrays of rank = 6. We adopt the same approach as in the
previous section, i.e. we start with component matriseB, andC of order 3x 6, 4 x 6,
and 6x 6, respectively, which are randomly sampled from a continuous distribution. The
implied 3 x 4 x 6 array will have rank 6 with probability 1. This can be seen as follows.
LetX; = CA;B  fori =1, 2, 3, whereA; is the diagonal matrix containing the elements of
theith row of A. Then, with probability 1, the rank ¢X1|X2|X3] equals 6, which implies
that the rank of the X 4 x 6 array is at least 6. However, sinde B, andC represent
a decomposition in 6 components, the array is at most of rank 6. Therefore, the implied
3 x 4 x 6 array has rank 6 with probability 1.

There will holdk 4 =rank(A) =3, kg =rank(B) =4 andk¢c = rank(C) = 6. This implies
that Kruskal's condition (2) is not satisfied, sinkg + kg + kc =13 and 2 + 2 = 14.
Next, we show tha#, B andC are essentially unique with probability 1, thus establishing
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our second counterexample. Analogous to Example 1, the component mAtrgesndC
may be transformed, with probability 1, in®= I¢ and

21

<2
24
20 @

24

1 0 0 1 x1 »n
A=|:0 1 0 1 x y2:| and B=

0
0
1
0 01 1 x3 y3 0

[eReoRaN™
oor o
O OO
e

wherex;, y; andz; are nonzero with probability 1. We have

0 x1 yiz17]
X1 Y122
X1 Y13
X1 Y134
X2 Y231
X2 Y222
y2z3 |’
X2 Y224
X3 Yy3Z1
X3 y322
X3 Y323
X3 y324 4

<o

(AeB) = (25)

(=l =] el ool o)

oNeoNoNol loloNoBol oo Re
oNeoNoNol loNaol i [=ReRale]

—_ O O QOI= O O o= O
>
)

which has full column rank with probability 1. For a general vegiet (o.8y5c¢)’ the 3x 4
matrix form of (A e B)w is

W=hg
o+ x18 + y121¢ X1€ + Y1220 X1€ + y123¢ 0+ x16 + y124Q
= X28 + Y2710 B+ x26 + y2z20 X268 + 2230 0+ x26 + y224¢ | .
X3¢ + y3z1¢Q X3¢ +y3z2¢ 7+ X3¢ + y323¢ O+ X3¢ + Y3249

(26)

Next we determine all solution&pyde @)’ for which rankW) = 1. Suppose first that =0
ande # 0. Thenz = ff =y =0. Moreover, since; # x; fori # j with probability 1, also
6 = 0. This yields the first solutiow; = (00 0 0¢ 0)'. Suppose next that = 0 ande = 0.
Then only one of., f, 7, 6 can be nonzero. This yields the four solutions=(x00000’,
w3 = (00000, wg = (00y000 andws = (000500)’. Now suppose thap # 0
ande = 0. Then there must hold, with probability 1, that= f =y = 6 = 0. The sixth
solution is thusvg = (00 00 0¢p)’.The vectorsv; constitute a rescaled permutation matrix.
Therefore, if no more solutions are possible we have shownAhBtandC in (24) are
essentially unique with probability 1. Thus it remains to show that 0 ande # 0 yields
a contradiction with probability 1.

The proof of this is as follows. Suppose that4 0 ands # 0. Definew;; =x;s + y;jz; ¢
fori=1,2,3andj =1,2, 3,4. Then

o4wyp W12 w1z 0+ w14
W = ) (27)

Wwp1  PHwx W2z O+ W24
w31 w32  y+ w3z O+ W34
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Notice that no more than ong;; can be zero. Indeed, #;; = wi; = 0 with (i, j) # (k, 1),

then (with probability 1) we have a system of two linear independent and homogenous
equations ik ande, which can only be solved by= ¢ =0. This implies that no column of

W equals(0 00’ and no row ofV equals 0 00 0). Together with the fact that ragw) = 1

this implies that we must hau@é,; # 0, w31 # 0, w32 # 0. Analogously, alsavi2 # 0,

w13 # 0, w23 # 0. Moreover, there exist nonzero constantandc, such that row 1 ofV
equalscs times row 2 and row 2 equats times row 3. For each column ¥ this yields

two equations. From the equations for columns 1 and 3 it follows that:

w13 w21
c1=—— and cx=—, (28)
w23 w31
- - w23 .
o0=cCclw21 — W11 and V= C_ — W33. (29)
2

From the second column we obtain the following two equationg for

w12 . ~ ~
ﬁ = c_l — wy2 and ﬁ = C2W32 — W22. (30)

Using (28), it can be seen that for (30) to hold we must haygio3iz; = Ww13W21W32.
This expression is equivalent to

& _ x2y1y322(23 — z1) + X3y1y223(21 — 22) + X1y2y321(22 — 23)
® x1x2y3(21 — 22) + x1x3y2(23 — 21) + x2x3y1(22 — 23)

(31)

Hence, by choosing, S, 7, €, ¢ as in (29)—(31) the matrix consisting of the first three
columns ofW will have rank 1.

Next, we show that adding the equations for the fourth columvwdéads to a contra-
diction. From the fourth column we obtain the following two equationsfor

(1—c1)d=c1oa—w1a and (1—c2)0 = cowzs — Woa. (32)

Both ¢1 = 1 andcp = 1 would yield (with probability 1) a rati@/¢ different from (31).
Therefore, we may assume that# 1 andc, # 1. Using (28), it can be seen that (32) can
only hold if

W14W23(W21 — W31) + W24(W23W31 — W21W13) + W3sw21(W13 — w23) =0.  (33)

We writee =d ¢, where the constadis defined by the right-hand side of (31). Consequently,
we may writew;; = ¢;;¢ Wheree;; = x;d + y;z; are constants. In this notation (33) is
equivalent tap3¢ = 0, with

€ = e14e23(e21 — €31) + e24a(e23e31 — e21€13) + e34e21(e13 — €23). (34)

By Fisher (1966jve have # 0 with probability 1. Hence=0 must hold, which contradicts
the assumption op # 0. This shows thap # 0 ande # 0 cannot occur and completes
the proof of our second counterexample.
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4. Discussion

The examples of this paper refute the conjecture, stat@drinBerge and Sidiropoulos
(2002) that Kruskal's condition will be necessary and sufficient when rankskenadks
coincide, for- > 4. Two counterexamples have been given. Example 1, in whiéh occurs
with probability zero and Example 2, in whieh= 6, occurs with probability 1. Since we
have not found a counterexample foe 5 which occurs with positive probability, it might
still be true that the conjecture holds foe 5 with probability 1. However, & 4 x 3 arrays
of rank 5 invariably do seem to yield unique solutions in numerical experiments. These
arrays represent cases where rankslarahks coincide, for which Kruskal’s condition is
not met. Although we have no mathematical proof for uniqueness in these cases, it does
seem safe to conclude that the conjectur&day Berge and Sidiropoulos (2008)ncorrect
for r = 5 generically, and not just in cases which occur with probability zero.
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